Introduction
Vitamin D is a fat-soluble vitamin that is naturally present in very few foods, added to others, and available as a dietary supplement. It is also produced endogenously when ultraviolet rays from sunlight strike the skin and trigger vitamin D synthesis. Vitamin D obtained from sun exposure, food, and supplements is biologically inert and must undergo two hydroxylations in the body for activation. The first occurs in the liver and converts vitamin D to 25-hydroxyvitamin D [25(OH)D], also known as calcidiol. The second occurs primarily in the kidney and forms the physiologically active 1,25-dihydroxyvitamin D [1,25(OH)2D], also known as calcitriol [1].
Vitamin D promotes calcium absorption in the gut and maintains adequate serum calcium and phosphate concentrations to enable normal mineralization of bone and to prevent hypocalcemic tetany. It is also needed for bone growth and bone remodeling by osteoblasts and osteoclasts [1,2]. Without sufficient vitamin D, bones can become thin, brittle, or misshapen. Vitamin D sufficiency prevents rickets in children and osteomalacia in adults [1]. Together with calcium, vitamin D also helps protect older adults from osteoporosis.
Vitamin D has other roles in the body, including modulation of cell growth, neuromuscular and immune function, and reduction of inflammation [1,3,4]. Many genes encoding proteins that regulate cell proliferation, differentiation, and apoptosis are modulated in part by vitamin D [1]. Many cells have vitamin D receptors, and some convert 25(OH)D to 1,25(OH)2D.
Serum concentration of 25(OH)D is the best indicator of vitamin D status. It reflects vitamin D produced cutaneously and that obtained from food and supplements [1] and has a fairly long circulating half-life of 15 days [5]. 25(OH)D functions as a biomarker of exposure, but it is not clear to what extent 25(OH)D levels also serve as a biomarker of effect (i.e., relating to health status or outcomes) [1]. Serum 25(OH)D levels do not indicate the amount of vitamin D stored in body tissues.
In contrast to 25(OH)D, circulating 1,25(OH)2D is generally not a good indicator of vitamin D status because it has a short half-life of 15 hours and serum concentrations are closely regulated by parathyroid hormone, calcium, and phosphate [5]. Levels of 1,25(OH)2D do not typically decrease until vitamin D deficiency is severe [2,6].
There is considerable discussion of the serum concentrations of 25(OH)D associated with deficiency (e.g., rickets), adequacy for bone health, and optimal overall health, and cut points have not been developed by a scientific consensus process. Based on its review of data of vitamin D needs, a committee of the Institute of Medicine concluded that persons are at risk of vitamin D deficiency at serum 25(OH)D concentrations <30 nmol/L (<12 ng/mL). Some are potentially at risk for inadequacy at levels ranging from 30–50 nmol/L (12–20 ng/mL). Practically all people are sufficient at levels ≥50 nmol/L (≥20 ng/mL); the committee stated that 50 nmol/L is the serum 25(OH)D level that covers the needs of 97.5% of the population. Serum concentrations >125 nmol/L (>50 ng/mL) are associated with potential adverse effects [1] (Table 1).
An additional complication in assessing vitamin D status is in the actual measurement of serum 25(OH)D concentrations. Considerable variability exists among the various assays available (the two most common methods being antibody based and liquid chromatography based) and among laboratories that conduct the analyses [1,7,8]. This means that compared with the actual concentration of 25(OH)D in a sample of blood serum, a falsely low or falsely high value may be obtained depending on the assay or laboratory used [9]. A standard reference material for 25(OH)D became available in July 2009 that permits standardization of values across laboratories and may improve method-related variability [1,10].
Sources of Vitamin D
Food
Very few foods in nature contain vitamin D. The flesh of fatty fish (such as salmon, tuna, and mackerel) and fish liver oils are among the best sources [1,11]. Small amounts of vitamin D are found in beef liver, cheese, and egg yolks. Vitamin D in these foods is primarily in the form of vitamin D3 and its metabolite 25(OH)D3 [12]. Some mushrooms provide vitamin D2 in variable amounts [13,14]. Mushrooms with enhanced levels of vitamin D2 from being exposed to ultraviolet light under controlled conditions are also available.
Fortified foods provide most of the vitamin D in the American diet [1,14]. For example, almost all of the U.S. milk supply is voluntarily fortified with 100 IU/cup [1]. (In Canada, milk is fortified by law with 35–40 IU/100 mL, as is margarine at ≥530 IU/100 g.) In the 1930s, a milk fortification program was implemented in the United States to combat rickets, then a major public health problem [1]. Other dairy products made from milk, such as cheese and ice cream, are generally not fortified. Ready-to-eat breakfast cereals often contain added vitamin D, as do some brands of orange juice, yogurt, margarine and other food products. Plant milk alternatives (such as beverages made from soy, almond, or oats) are often fortified with vitamin D to the amount found in fortified cow’s milk (about 100 IU/cup); the Nutrition Facts label will list the actual amount.
Both the United States and Canada mandate the fortification of infant formula with vitamin D: 40–100 IU/100 kcal in the United States and 40–80 IU/100 kcal in Canada [1].