February 2014
Antonio Paoli

 

Abstract

Obesity is reaching epidemic proportions and is a strong risk factor for a number of cardiovascular and metabolic disorders such as hypertension, type 2 diabetes, dyslipidemia, atherosclerosis, and also certain types of cancers. Despite the constant recommendations of health care organizations regarding the importance of weight control, this goal often fails. Genetic predisposition in combination with inactive lifestyles and high caloric intake leads to excessive weight gain. Even though there may be agreement about the concept that lifestyle changes affecting dietary habits and physical activity are essential to promote weight loss and weight control, the ideal amount and type of exercise and also the ideal diet are still under debate. For many years, nutritional intervention studies have been focused on reducing dietary fat with little positive results over the long-term. One of the most studied strategies in the recent years for weight loss is the ketogenic diet. Many studies have shown that this kind of nutritional approach has a solid physiological and biochemical basis and is able to induce effective weight loss along with improvement in several cardiovascular risk parameters. This review discusses the physiological basis of ketogenic diets and the rationale for their use in obesity, discussing the strengths and the weaknesses of these diets together with cautions that should be used in obese patients.

 

1. Introduction

Obesity is a rapidly growing epidemic worldwide [1] that has nearly doubled since 1980. In 2008, over 200 million men and nearly 300 million women aged 20 and over were obese, and 65% of the world’s population live in countries where overweight and obesity kills more people than underweight [2]. For family physicians, obesity is one of the most challenging problems confronted in daily practice and despite the efforts of both patients and physicians, this disorder is increasing in prevalence. Obesity is one of the principle risk factors for cardiovascular disease and along with dyslipidaemia, hypertension and diabetes contributes to the metabolic syndrome [3]. Many strategies have been proposed for reducing energy intake (diets, drugs, and bariatric surgery) [4] and for increasing energy output (exercise and non-exercise movement) [5], but even though there may exist a general agreement about the fundamental conceptual basis—changing energy intake and physical activity levels— how to achieve these goals is less clear. Regarding obesity interventions, diet is one of the more controversial issues and many different types have been advocated for weight loss, but there is little scientific evidence to recommend one diet over another. As a matter of fact there are still no definitive data on what dietary protocols are most effective in both the short and long term [6], or even what is the correct nutritional approach in general [7]. The most commonly accepted dietary strategy is based on relatively high levels of carbohydrates and low fat content, but according to some studies these low fat diets yield only modest weight losses and suffer from low long-term compliance issues [8]. In fact adherence of obese individuals to high carbohydrate/low fat nutrition is often a problem because the majority have been shown to have dietary preferences for foods with a rich fat content [9,10]. Another problem is that, in general, obese individuals prefer highly processed foods containing simple sugars rather than complex/raw carbohydrates; thus a low fat diet could actually encourage the consumption of sugars and refined carbohydrates that can worsen weight problems and also facilitate dyslipidemia, especially in insulin resistance individuals [11]. As a consequence of the debatable efficacy of these types of diet, there has been increased interest in recent years in very low carbohydrate ketogenic diets (VLCKDs) or simply ketogenic diets (KDs).

 

2. Ketogenic Diets in the Clinic

Even though the ketogenic diet may be useful as part of the treatment of various diseases (see Paoli et al. [11]), especially in pediatric pharmacoresistant epilepsy [12], the more common situation for the general practitioner is the use of KD by patients in order to lose weight. KDs have undoubtedly been shown to be effective, at least in the short to medium term, as a tool to fight obesity [13], hyperlipidemia and some cardiovascular risk factors [14,15,16], but ketogenic diets also raise some concerns among physicians [17]. Many of the concerns about the use of ketogenic diet as therapeutic tools could be attributed to a broad lack of knowledge about the physiological mechanisms involved. Ketogenic diets induce a metabolic condition named “physiological ketosis” by Hans Krebs, to distinguish it from the pathological diabetic ketosis [18].

 

6. Is There a Yo-Yo Effect?

While there are many studies which demonstrate that a ketogenic diet, at least in the short-term, results in greater weight loss than low-fat diets [13], from a long term perspective the success of a nutritional approach is defined by the amount of weight regain [64]. From this point of view, fewer data are available [41], in particular regarding so-called weight cycling or yo-yo effect [65,66]. Some opponents and doubters of KDs suggest that any beneficial effects are only transient. There is no universally accepted definition of “successful weight loss maintenance” following a diet but a reasonable candidate would be that proposed by Wing and Hill in 2001, which defines it as “individuals who have intentionally lost at least 10% of their body weight and kept it off at least one year” [67]. The criterion of 10% is chosen for its well documented effects in the improvements in risk factors for diabetes and cardiovascular disease, while the 1-yr duration criterion was proposed in agreement with the U.S. Institute of Medicine (IOM) [68]. Recently Sumitharn and colleagues have demonstrated that the increases in circulating ghrelin and in subjective appetite which accompanied a hypocaloric diet were reduced with a ketogenic approach [41]. Moreover we have very recently demonstrated that two brief periods of ketogenic diet separated by longer periods of maintenance of Mediterranean diet, led to successful long term weight loss and improvements in health risk factors without weight regain effect [69].

7. It Is Safe for Obese Subjects?

Questions are often raised by colleagues when discussing KDs and a main concern regards blood lipids. In common opinion a low carbohydrate, high protein and fat diet is potentially unhealthy as it may cause a rise in LDL cholesterol and TGs and this issue is of special importance in obese individuals. There are nevertheless several lines of evidence that point to beneficial effects of KDs on these cardiovascular risk factors. The majority of recent studies seem to amply demonstrate that the reduction of carbohydrates can actually lead to significant benefits in total cholesterol reduction, increases in HDL and reduction of blood triglycerides [11,13]. Furthermore KDs have been reported to increase the size and volume of LDL-C particles [70] which is considered to reduce cardiovascular disease risk since smaller LDL particles have a higher atherogenicity. There is a biochemical rational behind the effects of KDs on endogenous cholesterol synthesis. A key enyzme in cholesterol biosynthesis is HMGCoA reductase (the target for statins) which is activated by insulin, which means that an increase in blood glucose and consequently of insulin levels will lead to increased endogenous cholesterol synthesis. Thus a reduction in dietary carbohydrate together with a correct intake of cholesterol will lead to a inhibition of cholesterol biosynthesis.

Another concern regards potential negative renal effects. It is suggested that high levels of nitrogen excretion during protein metabolism can cause an increase in glomerular pressure and hyper-filtration [38]. In subjects with intact renal function higher dietary protein levels have caused some functional and morphological adaptations but without negative effects [71]. It is important though to take into account the renal related effects on blood pressure. The amino acids involved in gluconeogenesis and/or production of urea have, in general, blood pressure lowering effects, while acidifying amino acids tends to cause a rise in blood pressure. Subjects with renal insufficiency, even sub-clinical, kidney transplant patients and individuals with metabolic syndrome or other obesity related conditions will be more susceptible to the hypertensive effect of amino acids, especially of the sulphated variety [72]. The well-documented correlation between obesity and reduced nephron quantity on raised blood pressure puts obese subjects, or those with metabolic syndrome, at risk even if in diabetics with kidney damage the effects are not always consistent with the hypothesis [73,74]. In fact although some authors have reported a positive influence of a reduction in protein intake from 1.2 g/kg to 0.9 g/kg, over the short term, on albuminuria in type 2 diabetics [75], the same authors have subsequently stated instead that dietary protein restriction is neither necessary nor useful over the long term [76]. Furthermore some recent studies have demonstrated that VLCKD can even cause a regression of diabetic nephropathy in mice [77]. However, it is not correct to equate a ketogenic diet with a high protein diet, because the state of the art KDs are normoproteic thus the daily amount of protein is about 1.2–1.5 g of protein per Kg of body weight [44,78,79]. With regard to possible acidosis during VLCKD since the concentration of ketone bodies never rises above 8 mmol/L this risk is virtually non-existent in subjects with normal insulin function [80]. Regarding the overall effects of ketogenic diet on health there are differences in opinion about the research. Recently, in a recent systematic review based on limited observational studies, Noto and colleagues suggested a possible harmful effect of low carbohydrate/high protein diet (LC/HP) on health: i.e., an increase of all-cause mortality risk whilst there was no effect on CVD mortality [81]. On the other hand, for example, a large European study demonstrated that an increase in protein content and a reduction in the glycaemic index led to better maintenance of weight loss without differences regarding adverse effects [82]. The existing contradictory evidences on this matter lies in the complex interactions between low-carbohydrate diets and long-term outcomes. Moreover it is important to underline again that a ketogenic diet is not, strictly speaking, a LC/HP; KD is mainly a very low carbohydrate diet with a normal amount of protein that produce a peculiar metabolic state that should not be assimilated to a LC/HP. Some authors claims that a ketogenic diet could affect negatively glucose metabolism [83] but in the cited study the researchers performed the glucose load immediately after the cessation of the KD. It is reasonable to suppose that after a period of very low carbohydrate diet there would be an increased glucose sensitively and for this reason is advisable to have a transition phase from ketogenic diet to a normal diet. Another very recently published study demonstrated that a long-term KD (22 weeks) caused dyslipidemia, a pro-inflammatory state, signs of hepatic steatosis, glucose intolerance and a reduction in beta and alpha cell mass, without weight loss in mice [84]. Two considerations need to be made: the first is that the induction of ketosis and the response to ketosis in man and mouse are quite different and this species metabolic differences could explain why insulin sensitivity is improved in man [54] whilst is decreased in mouse [85] after KD. The second is that 22 weeks is a very long period for a mouse that could be compared to several years in human beings [86,87]. In any case in human subjects the effects of a very prolonged ketogenic diet are, as yet, not well investigated, for this reason, KD may be used safely for a limited period (from 3 weeks to some months) to stimulate fat loss, improve metabolism and help the transition to a correct Mediterranean diet style [69]. Some authors report that a KD induces a severe reduction of IGF-I concentration in rats [88] but, (even if we can compare rat with man) but as stated above a blunting of the IGF-1/AKT/mTOR pathway is not necessary a harmful effect.

Another point that must be addressed is the effect of KD on bone metabolism. There is evidence showing that short-term KDs impair (suggested to be mediated by reductions in circulating IGF-1) bone mass density and mechanical properties of bone in mouse [89]; whilst in humans very long term KD in children with intractable epilepsy may lead to a progressive reduction of bone mineral content [90]. The “caveat” about KD and bone is indispensable but we have to take into account that the study of Bielohuby was performed on growing rats for 4 weeks (i.e., a very long time for humans) and thus we have to consider the above mentioned difference between ketosis in the two species, whilst the condition of a life-long ketogenic diet in intractable epilepsy is beyond the scope of this review.

On the other side, it has been suggested recently that the metabolic complications of obesity, such as type 2 diabetes, metabolic syndrome, impaired glucose tolerance, insulin resistance, hyperglycemia, and inflammation may be associated with an increased risk of fracture and poor bone health. Moreover the amount of visceral fat (related to low-grade chronic inflammation) is associated with lower bone mineral density [91]. Whilst there are many studies on the effects of dietary protein levels on bone metabolism in humans the few investigations on ketogenic diet and bone metabolism were performed on epileptic children. But even if we assume a higher protein intake during a KD (and it is not completely correct as stated above) recently published articles suggested that there is not a negative effect on bone health [92,93,94,95].

 

8. Conclusions

A period of low carbohydrate ketogenic diet may help to control hunger and may improve fat oxidative metabolism and therefore reduce body weight. Furthermore new kinds of ketogenic diets using meals that mimic carbohydrate rich foods could improve the compliance to the diet [78]. Attention should be paid to patient’s renal function and to the transition phase from ketogenic diet to a normal diet that should be gradual and well controlled [69]. The duration of ketogenic diet may range from a minimum (to induce the physiological ketosis) of 2–3 weeks to a maximum (following a general precautionary principle) of many months (6–12 months). Correctly understood the ketogenic diet can be a useful tool to treat obesity in the hands of the physician.

 

Acknowledgments

Antonio Paoli research activity is funded by the Department of Biomedical Sciences, University of Padova.